
Report for 1LBP
program of 1Intro

Date: April 29th, 2024 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

Chapter2Findings 4
2.1 Software Security . 4

2.1.1 Unexpected spot prices due to different token decimals 4
2.1.2 Incorrect rounding direction . 4

2.2 Additional Recommendation . 5
2.2.1 Remove redundant checks . 5

2.3 Note . 6
2.3.1 Inconsistent swap results out of the LBP process 6
2.3.2 Administrative risk of LBP Pool creator . 6

Report Manifest

Item Description
Client 1Intro
Target 1LBP program of 1Intro

Version History

Version Date Description
1.0 April 29th, 2024 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The focus of this audit is the programs/one-intro within the 1LBP program of 1Intro 1.
Please note that other external dependencies in the repository, including the solana devel-
opment framework Anchor 2, are considered reliable in terms of both functionality and security,
these files are not included in the scope of the audit.

The auditing process is iterative. Specifically, we would audit the commits that fix the
discovered issues. If there are new issues, we will continue this process. The commit SHA
values during the audit are shown in the following table. Our audit report is responsible for
the code in the initial version (Version 1), as well as new code (in the following versions) to fix
issues in the audit report.

Project Version Commit Hash

1LBP program of 1Intro Version 1 696236080ab3926d88b5760e9c92cd8192cb43da
Version 2 317225207312e958a227172186a169e923890302

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly
specified, the security of the language itself (e.g., the solidity language), the underlying com-
piling toolchain and the computing infrastructure are out of the scope.

1https://github.com/1intro/1intro-programs

2https://www.anchor-lang.com/

https://github.com/1intro/1intro-programs
https://www.anchor-lang.com/

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.
- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarios with independent
auditors to cross-check the result.
- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

2

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 3 and Common Weak-
ness Enumeration 4. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:
- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

3https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
4https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find two potential security issues. Besides, we also have one recommendation
and two notes.
- Low Risk: 2
- Recommendation: 1
- Note: 2

ID Severity Description Category Status

1 Low Unexpected spot prices due to different
token decimals

Software Secu-
rity Fixed

2 Low Incorrect rounding direction Software Secu-
rity Fixed

3 - Remove redundant checks Recommendation Confirmed

4 - Inconsistent swap results out of the LBP
process Note -

5 - Administrative risk of LBP Pool creator Note -

The details are provided in the following sections.

2.1 Software Security

2.1.1 Unexpected spot prices due to different token decimals

Severity Low
Status Fixed in Version 2

Introduced by Version 1

Description In the current implementation, the pool creators can add or withdraw liquidity
with functions join_pool() and exit_pool() out of the LBP process if the swap functionality
is enabled. In this scenario, if the decimals of the two tokens are different, the spot prices can
be changed while adding or withdrawing the liquidity.

For example, when the decimal of ReprToken is much larger than PoolToken, the pool cre-
ator can invoke the function exit_pool() to withdraw the amount of ReprToken as 0 while the
withdrawn amount of PoolToken is normal (i.e., larger than 0). This can decrease the price of
ReprToken. Similarly, through the join_pool() function, pool creators can mint infinite ReprTo-
ken without providing the corresponding amount of PoolToken.
Impact Pool creators can change the token prices within the pool.
Suggestion Revise the code logic accordingly.

2.1.2 Incorrect rounding direction

Severity Low
Status Fixed in Version 2

Introduced by Version 1

Description Function join_pool() allows the pool creator to add liquidity to the pool, and
the internal function process() is invoked to perform the relevant calculations and transfer
logic. However, when calculating the required token quantities, rounding down is used, which
is incorrect.
6 pub fn proportional(amount: u64, numerator: u64, denominator: u64) -> anchor_lang::Result<u64>

{
7 if denominator == 0 {
8 return Ok(amount);
9 }
10 u64::try_from((amount as u128).checked_mul(numerator as u128).unwrap().checked_div(

denominator as u128).unwrap()).map_err(|_| ErrorCode::CalculationFailure.into())
11 }
12
13 pub fn value_from_shares(shares: u64, total_value: u64, total_shares: u64) -> anchor_lang::

Result<u64> {
14 proportional(shares, total_value, total_shares)
15 }

Listing 2.1: src/utils/calc.rs

Impact The required token amount for minting the same amount of LP tokens is less than
expected.
Suggestion Round up when calculating the required token amount for minting LP.

2.2 Additional Recommendation

2.2.1 Remove redundant checks

Status Confirmed
Introduced by Version 1

Description There are some redundant checks in the constraints defined for the Accounts
structure for the instructions. For example, in the following code segment, the token_0_balance
is validated to be larger than zero, as well as larger than or equal to MIN_BALANCE.
371 constraint = params.token_0_balance > 0 && params.token_0_balance >= MIN_BALANCE &&

params.token_0_balance <= MAX_BALANCE @ErrorCode::ConstraintInvalidTokenBalance,
372 constraint = params.token_0_weight >= MIN_WEIGHT && params.token_0_weight <= MAX_WEIGHT

@ErrorCode::ConstraintInvalidTokenWeight,

Listing 2.2: src/lib.rs

Suggestion Remove these redundant checks.
Feedback from theProject Understood but this is to enforce the initial token balances should
be greater than 0 and we don’t want to enforce a min balance at the very beginning. the
MIN_BALANCE setting will be reviewed and adjusted in a later version if needed.

5

2.3 Note

2.3.1 Inconsistent swap results out of the LBP process

Description Out of the LBP process, the pool creator can manually enable the swap func-
tionality and change the weights of the tokens. Though the sudden changes of weights in the
pools would not change the spot price, it can significantly change the invariant of the pool,
resulting in inconsistent swap results for users before and after the change of weights.
94 pub fn update_token0_weight(ctx: Context<UpdateToken0Weight>, params: UpdateToken0WeightParams

) -> Result<()> {
95 validate_ctx(&ctx)?;
96 ctx.accounts.process(params)
97 }
98
99 pub fn update_token1_weight(ctx: Context<UpdateToken1Weight>, params: UpdateToken1WeightParams

) -> Result<()> {
100 validate_ctx(&ctx)?;
101 ctx.accounts.process(params)
102 }

Listing 2.3: src/lib.rs

Feedback from the Project As a LBP process, the weights are scheduled to be changed for a
few days, usually from a higher project token weight to the lower project token weight finally,
so weight mutation is needed during LBP process, and update token0 or token1 weights are
also not allowed during LBP process.

If out of the LBP process, the pool swap flag is immediately set to FALSE once the LBP
process ends, and the project team or the pool creator is supposed to remove all liquidity from
the 1intro platform and 1intro platform doesn’t support DEX trading directly after LBP.

Hence, I don’t have too much concerns here and as a project team I don’t think they will
play with this set swap enabled transaction to cause trouble potentially.

2.3.2 Administrative risk of LBP Pool creator

Description The pool creator can change several configurations of the pool, whichmay cause
administrative risks.

Out of the LBP process, the pool creator is able to make sudden changes to the weights
of the pool. Though this operation would not change the spot price, the depth and swap
result of a pool would be significantly changed.
The pool creator is able to pause the swap functionality inside the pool. This is designed to
stop the LBP process. However, this feature can be abused if the pool creator is inherently
malicious.

Feedback from the Project This is to provide a flexibility control to the project team, but this
feature is not opened and integrated from 1intro website at the moment.

Potentially there may be some cases that the project team would like to pause the swaps
(e.g. hacks or shutdown of the project, etc,) and the underlying program should be ready to

6

support when needed.

7

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Unexpected spot prices due to different token decimals
	2.1.2 Incorrect rounding direction

	2.2 Additional Recommendation
	2.2.1 Remove redundant checks

	2.3 Note
	2.3.1 Inconsistent swap results out of the LBP process
	2.3.2 Administrative risk of LBP Pool creator

